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1. INTRODUCTION 
Thanks to our collaboration with AB-Horizon, we are developing a smart mirrored AR cobot to assist 
people during training. Our aim is to develop an intelligent vision system for action recognition in 
fitness training. Human movements during physical exercise are various and heterogeneous so 
traditional mechanical measurement systems are ill-suited to assess human motion in such a wide 
variety of movements [1]. A subjective approach is limited and not suitable for an extensive 
commercial production. However new techniques as Deep Learning (DL) for RGB images let us 
perform model-based estimation to measure quantities intrinsically subjective [2]. DL visual network 
reads data from the image plane and generates a skeletal model in this 2D representation.  New DL 
architectures and frameworks are constantly released, their oriented approach to hardware 
optimization supports and inspires embedded device application [3][4]. In this paper we show our 
first result, the operative strategy and the calibration test we intend to perform to validate our pose 
estimation project.  
This project is focused on developing an embedded device capable of qualitative bio-mechanical 
analysis. A key point of this application is to establish a trade-off between hardware cost and software 

computational consumption: for this reason we 
benchmarked different solutions that could be used 
for this task. Different MPU suitable for inference 
engine (CPU, GPU, VPU) were tested with well-known 
DNN (Deep neural network) to assess their performance. 
Our specific objective leads to a highly customized and 
specialized software development: general on the motion 
to acquire and specific on the hardware constrains. We 
will confront various network manager such the 
TensorFlow framework and different optimization 
technique as Transfer Learning and Fine tuning for our 
sequential convolutional network. After choosing the 

right hardware, customized training operation for our model will be mandatory to accomplish 
accuracy requirements.  

 
Figure 1 – Real time pose acquisition with CPU backend. 

 
2. METHODOLOGY 
We propose a vision-based acquisition system composed by two wide-angle RGB cameras. Each 
camera system will perform independent inference operation based on a neural network specialized in 
a specific body-part.  
Our aim is to: 

§ Identify and test an embedded machine capable of running inference operation from a DNN. 
§ Develop and customize a software for neural networks handling and cameras control. 
§ Estimate the position of human body’s joints 
§ Validate these measurements via ground truth calibration. 

Fitness’ experts require the pose and movement of the fundamental segments of our body to assess 
training, so it is mandatory to correctly estimate the vectors and the body-frame that describe human 
motion.  
From the geometrical point of view, we want to firstly validate our system with a ground-truth 
analysis using as reference a marker-based infrared multicamera mocap system (BTS - Italy) [5]. 
Calibration information such the uncertainty associated to the roto-translation vectors of each body 
frame will allow further correction. From our multi-camera system, we will detect multi-view joint 



position and fed it into a post-processing sensor-fusion algorithm tuned from the ground-truth 
calibration.  
Furthermore, understanding the performance of our software means to evaluate its real-time 
processing capability. The camera’s framerate serves as an upper limit for our algorithm processing 
rate, but speed is mainly dependent on the processing power available, and the algorithms used. 
A first benchmark we propose is based on confrontation between different inference engine 
supporting compatible neural networks. For instance, offline DL algorithms need significant amounts 
of computing resources (high level GPU’s) and they are not embedded-optimized but, with no real-
time restriction, they are capable of handling much more data and produce better-accuracy 
estimations resulting in a much longer processing time. In addition, it is possible to integrate depth 
information in this class of algorithms [6]. 
Therefore, a post-processing analysis of our embedded pose estimation system can explain how real-
time application are strongly affected by the latency phenomenon.  
Offline pose estimator will generate the same class of data as our software and a complete analysis in 
different condition will let us understand the weakness of RT application. We will correct it with 
model tuning operation based on the fundamental movement of the fitness training. 
We will strive to support different specialized neural networks and our proposed solution is to design 
a multi-core independent system with embedded cameras. Each sub-system will work separately but 
with parallel threads and a synchronization routine. We suggest the implementation of a Raspberry PI 
cluster. Such a system can support multiple CPU-based inference engine networks. To gain more 
computing power we manage to integrate VPU (Myriad) backend for neural networks, upgrading the 
cluster hardware with INTEL Movidius NCS 2.  Our intent is to develop is a total customized and 
embedded optimized model for DL. It will be computationally efficient with pre and post processing 
algorithm like ROI detection approach [7] and pose prediction. Transfer learning will also allow re-
training of the network with a customized dataset loaded with fitness movements recorded and 
specific pose images. 
 
3. VALIDATION 
 
We based our core functionalities on the 
Mediapipe pipeline. This framework 
combines the performance of the Tflite [11] 
DL pose model [3] with a graph-based-
calculator written in Cpp. It is capable of 
synchronously predict and inference the pose 
data from a video streaming. The two-step 
detector-tracker ML pipeline combines 
powerful prediction and tracking algorithm 
with inference on a Tflite pose model for 
body recognition. The prediction calculator is 
based on a region of interest (ROI) detection 
Tflite model, tiny and lite. The detector 
calculator generates a ROI according to the 
result of the neural face detector (TFlite DL 
model, it runs at a speed of 200–1000+ FPS 
[9]). However, if some high confident pose 
data are present in the previous frame (pose 
presence detected and tracked) the heavy pose 
landmark TFlite model will work only on a 
Tracking-extracted area (Landmark from the 
previous frame); 
In this way the detector is invoked only as 
needed.                                                             Figure 2 – Mediapipe Pipeline block diagram: in blue the detector and                                                                                                                                                                                    
-                                                                                               inference calculator [10]. 



Mixtures of different processing technique allow saving computation resources; latency phenomena 
are under control of supervisor calculators that tune and combine tracking and inference as needed 
(our aim is an accuracy and speed tradeoff). 
This framework also offers GPU-optimized libraries to exploit the power of dedicated video card 
running an inference engine [12]. 
Mediapipe is built as a modular block diagram, therefore customized model can be easily 
implemented and incorporated in the framework.  
We developed a customized Blazepose model (Tflite), specifically tuned for sportive action 
recognition and based on the original MP Pose model [3]. We customize the model to simplify and 
specialize its capacity.  Tensor Flow (TF) framework manage the transfer learning operation, a 
technique to repurpose the identity of a neural network [13]. The TFLite model converted back in TF 
standard format is splitted up to his fundamental layer. Then the last class layer is retrained as needed. 
Afterwards the whole model is reassembled and easily compressed in the TFLite format. For the 
retraining operation we assemble a whole new dataset, much smaller respect to standard trainer 
dataset but effective for our tuning purpose. 
  
 
 
 
Performance is the 
critical aspect in real 
time application. 
Market investigation 
let us define an 
embedded PC 
capable to run and 
support Neural 
networks and 
inference process. 
We focused on the 
ARM-based device 
because of their 
combination of 
performance,                 Figure 3 – Benchmark results on ARM CPU’s. Mediapipe pipeline was tested on Raspberry PI 4b       
_                                                and NVIDIA Jetson nano (64bit ARM CPU’s). Performance analysis focus on the frame rate        _                   
_                                                 processing speed. 
 
compactness, and cheapness. To evaluate every embedded system candidate, we tested the neural 
network with the python package developed for ARM CPU ([14]). We run The Mediapipe pipeline on 
Raspberry Pi 4b with the powerful ARMv8 CPU but current state of art of the MP embedded-
optimized library does not support 64-bit ARM CPU (from MP framework is seen as an ARMv7 32-
bit CPU) so we are not able to exploit the power of this innovative MPU (micro-processor-unit). 
For these compact devices, real time Deep learning application are quite well supported but 
performances are not stable, and the architectures of neural network can considerably affect latency 
and accuracy. 
A first approach was to convert the TFlite model to Openvino format and run the inference 
computation on the Neural Compute Stick v2 VPU. We achieved speed and accuracy but not as 
expected. Both the detection and the landmark models were converted to the Openvino format and 
rearranged into the MP pipeline. In fact, the inference computed on such these models can only be 
performed by the Movidius Myriad core (Openvino doesn’t support ARM CPU [15]). 
At this point, the ARM strategy seems to be deprecated and not functional to our scope, anyway these 
CPU can manage the environment for our project and support the GPU backend strategy. We’re now 
focusing on a NVIDIA based device with an aarch64 architecture. 
GPU based embedded device, clearly more expansive and a bit more power consumptive, will be our 
identified solution. The NVIDIA Jetson Nano is compact and quite powerful to run the Tflite full 



model at 22 FPS, enough for our real-time application. The tiny and compact GPU of this board is the 
perfect compromise we are searching for. Finally, we tested the MP pipeline on the Intel i7-9750H 
CPU for reference data. 
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