
DEEP	LEARNING	FOR	GESTURE	RECOGNITION	IN	SPORTIVE	TRAINING	OPERATION	
PERFORMED	BY	STANDALONE	SPECIALIZED	NEURAL	NETWORK	VISION-BASED	SYSTEMS	

Bernardo Lanza(1), Cristina Nuzzi(1), Simone Pasinetti(1), Matteo Lancini (1)

(1) Dip. di Ingegneria Meccanica e Industriale, Università di Brescia, Via Branze, 38- 25123 Brescia
mail autore di riferimento: bernardo.lanza@unibs.it

1. INTRODUCTION
Thanks to our collaboration with AB-Horizon, we are developing a smart mirrored AR cobot to assist
people during training. Our aim is to develop an intelligent vision system for action recognition in
fitness training. Human movements during physical exercise are various and heterogeneous so
traditional mechanical measurement systems are ill-suited to assess human motion in such a wide
variety of movements [1]. A subjective approach is limited and not suitable for an extensive
commercial production. However new techniques as Deep Learning (DL) for RGB images let us
perform model-based estimation to measure quantities intrinsically subjective [2]. DL visual network
reads data from the image plane and generates a skeletal model in this 2D representation. New DL
architectures and frameworks are constantly released, their oriented approach to hardware
optimization supports and inspires embedded device application [3][4]. In this paper we show our
first result, the operative strategy and the calibration test we intend to perform to validate our pose
estimation project.
This project is focused on developing an embedded device capable of qualitative bio-mechanical
analysis. A key point of this application is to establish a trade-off between hardware cost and software

computational consumption: for this reason we
benchmarked different solutions that could be used
for this task. Different MPU suitable for inference
engine (CPU, GPU, VPU) were tested with well-known
DNN (Deep neural network) to assess their performance.
Our specific objective leads to a highly customized and
specialized software development: general on the motion
to acquire and specific on the hardware constrains. We
will confront various network manager such the
TensorFlow framework and different optimization
technique as Transfer Learning and Fine tuning for our
sequential convolutional network. After choosing the

right hardware, customized training operation for our model will be mandatory to accomplish
accuracy requirements.

Figure 1 – Real time pose acquisition with CPU backend.

2. METHODOLOGY
We propose a vision-based acquisition system composed by two wide-angle RGB cameras. Each
camera system will perform independent inference operation based on a neural network specialized in
a specific body-part.
Our aim is to:

§ Identify and test an embedded machine capable of running inference operation from a DNN.
§ Develop and customize a software for neural networks handling and cameras control.
§ Estimate the position of human body’s joints
§ Validate these measurements via ground truth calibration.

Fitness’ experts require the pose and movement of the fundamental segments of our body to assess
training, so it is mandatory to correctly estimate the vectors and the body-frame that describe human
motion.
From the geometrical point of view, we want to firstly validate our system with a ground-truth
analysis using as reference a marker-based infrared multicamera mocap system (BTS - Italy) [5].
Calibration information such the uncertainty associated to the roto-translation vectors of each body
frame will allow further correction. From our multi-camera system, we will detect multi-view joint

position and fed it into a post-processing sensor-fusion algorithm tuned from the ground-truth
calibration.
Furthermore, understanding the performance of our software means to evaluate its real-time
processing capability. The camera’s framerate serves as an upper limit for our algorithm processing
rate, but speed is mainly dependent on the processing power available, and the algorithms used.
A first benchmark we propose is based on confrontation between different inference engine
supporting compatible neural networks. For instance, offline DL algorithms need significant amounts
of computing resources (high level GPU’s) and they are not embedded-optimized but, with no real-
time restriction, they are capable of handling much more data and produce better-accuracy
estimations resulting in a much longer processing time. In addition, it is possible to integrate depth
information in this class of algorithms [6].
Therefore, a post-processing analysis of our embedded pose estimation system can explain how real-
time application are strongly affected by the latency phenomenon.
Offline pose estimator will generate the same class of data as our software and a complete analysis in
different condition will let us understand the weakness of RT application. We will correct it with
model tuning operation based on the fundamental movement of the fitness training.
We will strive to support different specialized neural networks and our proposed solution is to design
a multi-core independent system with embedded cameras. Each sub-system will work separately but
with parallel threads and a synchronization routine. We suggest the implementation of a Raspberry PI
cluster. Such a system can support multiple CPU-based inference engine networks. To gain more
computing power we manage to integrate VPU (Myriad) backend for neural networks, upgrading the
cluster hardware with INTEL Movidius NCS 2. Our intent is to develop is a total customized and
embedded optimized model for DL. It will be computationally efficient with pre and post processing
algorithm like ROI detection approach [7] and pose prediction. Transfer learning will also allow re-
training of the network with a customized dataset loaded with fitness movements recorded and
specific pose images.

3. VALIDATION

We based our core functionalities on the
Mediapipe pipeline. This framework
combines the performance of the Tflite [11]
DL pose model [3] with a graph-based-
calculator written in Cpp. It is capable of
synchronously predict and inference the pose
data from a video streaming. The two-step
detector-tracker ML pipeline combines
powerful prediction and tracking algorithm
with inference on a Tflite pose model for
body recognition. The prediction calculator is
based on a region of interest (ROI) detection
Tflite model, tiny and lite. The detector
calculator generates a ROI according to the
result of the neural face detector (TFlite DL
model, it runs at a speed of 200–1000+ FPS
[9]). However, if some high confident pose
data are present in the previous frame (pose
presence detected and tracked) the heavy pose
landmark TFlite model will work only on a
Tracking-extracted area (Landmark from the
previous frame);
In this way the detector is invoked only as
needed. Figure 2 – Mediapipe Pipeline block diagram: in blue the detector and
- inference calculator [10].

Mixtures of different processing technique allow saving computation resources; latency phenomena
are under control of supervisor calculators that tune and combine tracking and inference as needed
(our aim is an accuracy and speed tradeoff).
This framework also offers GPU-optimized libraries to exploit the power of dedicated video card
running an inference engine [12].
Mediapipe is built as a modular block diagram, therefore customized model can be easily
implemented and incorporated in the framework.
We developed a customized Blazepose model (Tflite), specifically tuned for sportive action
recognition and based on the original MP Pose model [3]. We customize the model to simplify and
specialize its capacity. Tensor Flow (TF) framework manage the transfer learning operation, a
technique to repurpose the identity of a neural network [13]. The TFLite model converted back in TF
standard format is splitted up to his fundamental layer. Then the last class layer is retrained as needed.
Afterwards the whole model is reassembled and easily compressed in the TFLite format. For the
retraining operation we assemble a whole new dataset, much smaller respect to standard trainer
dataset but effective for our tuning purpose.

Performance is the
critical aspect in real
time application.
Market investigation
let us define an
embedded PC
capable to run and
support Neural
networks and
inference process.
We focused on the
ARM-based device
because of their
combination of
performance, Figure 3 – Benchmark results on ARM CPU’s. Mediapipe pipeline was tested on Raspberry PI 4b
_ and NVIDIA Jetson nano (64bit ARM CPU’s). Performance analysis focus on the frame rate _
_ processing speed.

compactness, and cheapness. To evaluate every embedded system candidate, we tested the neural
network with the python package developed for ARM CPU ([14]). We run The Mediapipe pipeline on
Raspberry Pi 4b with the powerful ARMv8 CPU but current state of art of the MP embedded-
optimized library does not support 64-bit ARM CPU (from MP framework is seen as an ARMv7 32-
bit CPU) so we are not able to exploit the power of this innovative MPU (micro-processor-unit).
For these compact devices, real time Deep learning application are quite well supported but
performances are not stable, and the architectures of neural network can considerably affect latency
and accuracy.
A first approach was to convert the TFlite model to Openvino format and run the inference
computation on the Neural Compute Stick v2 VPU. We achieved speed and accuracy but not as
expected. Both the detection and the landmark models were converted to the Openvino format and
rearranged into the MP pipeline. In fact, the inference computed on such these models can only be
performed by the Movidius Myriad core (Openvino doesn’t support ARM CPU [15]).
At this point, the ARM strategy seems to be deprecated and not functional to our scope, anyway these
CPU can manage the environment for our project and support the GPU backend strategy. We’re now
focusing on a NVIDIA based device with an aarch64 architecture.
GPU based embedded device, clearly more expansive and a bit more power consumptive, will be our
identified solution. The NVIDIA Jetson Nano is compact and quite powerful to run the Tflite full

model at 22 FPS, enough for our real-time application. The tiny and compact GPU of this board is the
perfect compromise we are searching for. Finally, we tested the MP pipeline on the Intel i7-9750H
CPU for reference data.

REFERENCES

[1] C. S. Chan and H. Liu, "Fuzzy Qualitative Human Motion Analysis," in IEEE Transactions
on Fuzzy Systems, vol. 17, no. 4, pp. 851-862, Aug. 2009, doi:
10.1109/TFUZZ.2009.2016553.

[2] Zhe Cao, Student Member, IEEE, Gines Hidalgo, Student Member, IEEE, Tomas Simon,
Shih-En Wei, and Yaser Sheikh, “Trends in OpenPose: Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields”, 2019.

[3] Valentin Bazarevsky and Ivan Grishchenko, Research Engineers, Google Research,“On-
device, Real-time Body Pose Tracking with MediaPipe BlazePose”, 2020.

[4] OpenVINO™ Toolkit Overview https://docs.openvinotoolkit.org/latest/index.html#index
[5] Matt Topley, James G. Richards University of Delaware, Newark, DE 19716, USA. “A

comparison of currently available optoelectronic motion capture systems”, 2020.
[6] Mao Ye, Xianwang Wang, Ruigang Yang, Liu Ren, Marc Pollefeys, University of

Kentucky, HP Labs, Palo Alto, Bosch Research, ETH Zurich. “Accurate 3D Pose
Estimation From a Single Depth Image”, 2011.

[7] https://google.github.io/mediapipe/solutions/pose.html
https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_landmark/face_l
andmark_landmarks_to_roi.pbtxt

[8] Jie Lu Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, Guangquan Zhang “Transfer
learning using computational intelligence: A survey”, 2015.

[9] BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs Valentin Bazarevsky
Yury Kartynnik Andrey Vakunov Karthik Raveendran Matthias Grundmann Google
Research 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

[10] https://viz.mediapipe.dev/demo/pose_tracking
[11] https://www.tensorflow.org/lite
[12] https://google.github.io/mediapipe/framework_concepts/gpu.html
[13] Sarkar, Dipanjan, Raghav Bali, and Tamoghna Ghosh. Hands-On Transfer Learning with

Python: Implement advanced deep learning and neural network models using TensorFlow
and Keras. Packt Publishing Ltd, 2018.

[14] https://pypi.org/project/mediapipe-rpi4/
[15] https://docs.openvinotoolkit.org/2021.3/openvino_docs_IE_DG_supported_plugins_Suppor

ted_Devices.html

